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Introduction. Here I digress from work in progress—namely, a review of a
paper by C. Y. She & H. Heffner1, which was the first of several papers inspired
by E. Arthurs & J. L. Kelly’s “On the simultaneous measurement of a pair of
conjugate observables” (BSTJ 44, 725 (1965)); it is my intention to incorporate
that material into an account of generalized quantum measurement theory on
which I was at work two digressions ago—to sharpen my understanding of
some elementary material that originated in Dirac’s treatment of the theory
of quantum oscillators, but which acquired new interest and was carried to a
higher state of development when Roy Glauber2 and others laid the foundations
of quantum optics. My interest here is not in quantum optics but in the details
of those mathematical “higher developments,” as they relate oscillators and to
the argument that lies at the heart of the She/Heffner paper.

I expect to draw my material primarily from Chapters 2 & 3 of Christopher
Gerry and Peter Knight’s Introductory Quantum Optics (2005) and Chapter 0
of my own Advanced Quantum Topics (2000).

Oscillator basics. The oscillator Hamiltonian reads

H = 1
2m (p2 + m2ω2 q2)

We set m = 1 and introduce non-hermitian operators

a = 1√
2!ω

(ωq + ip)

a+ = 1√
2!ω

(ωq − ip)

}
(1)

giving
H = !ω(a+a + 1

2 I)

[a , a+] = I (2)

Let the dimensionless hermitian “number operator” N—the name of which
makes natural sense only in quantum-field-theoretic or quantum optical contexts

1 “Simultaneous measurement of noncommuting observables,” Phys. Rev.
152, 1103 (1966).

2 “Coherent and incoherent states of the radiation field,” Phys. Rev. 131,
2766 (1963).
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where one is working either explicitly or implicitly in Foch space—be defined

N = a+a (3)

It becomes more natural henceforth to speak of N than of H = !ω(N + 1
2 I).

Suppose N |ν) = ν|ν). Then

a+N |ν) = a+(aa+ − I)|ν) = (N a+ − a+)|ν) = ν a+|ν)
⇓

N a+|ν) = (ν + 1)a+|ν)

and similarly N a |ν) = (ν − 1)a |ν)

Therefore N ap|ν) = (ν−p)ap|ν) : p = 1, 2, 3, . . . But N is positive semi-definite:
if |β) = a |α) then (α|N |α) = ‖|β)‖2 ! 0 (all |α)). To truncate the descending
series (ν − p) : p = 1, 2, 3, . . . we are forced to take ν to be an integer and to
posit the existence of a ground state (“vacuum” state) |0) such that

a |0) = 0 (4)

Building on that foundation, we have3

|1) = c0 a+|0)
|2) = c1 a+|1)
|3) = c2 a+|2)...

|n + 1) = cn a+|n)
...

To evaluate the constants cn (which can without loss of generality be assumed
to be real) we proceed

(n|a a+|n) = (n + 1)(n|n) = n + 1

= c−2
n (n + 1|n + 1) = c−2

n

}
=⇒ cn = 1√

n+1

It now follows that

|n) = 1√
n

a+|n − 1)

= 1√
n(n−1)

(a+)2|n − 2)

...
= 1√

n!
(a+)n|0) (5)

For the purposes at hand these results are most conveniently written

a |n) = gn|n − 1), a+|n) = gn+1|n + 1) with gn =
√

n

from which we recover N |n) = a+a |n) = gn a+|n − 1) = gngn|n) = n|n). If

3 Here I borrow from my “Simultaneous measurement of noncommuting
observables” (October 2012), page 5.
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quantum oscillators were the objects of interest we could, by H = !ω (N + 1
2 I),

write
H |n) = En|n) with En = !ω

(
n + 1

2

)

and easily recover4 descriptions of the familiar oscillator eigenstates

ψn(q) = (q|n)

But our present interest lies elsewhere.

Eigenstates of creation/annihilation operators: “coherent states”. We want to
describe the solutions of

a |α) = α|α) equivalently (α|a+ = (α|ᾱ

where by the non-hermiticity of a we expect the eigenvalues α to be complex.
The states |α) are, for reasons that will emerge, called“coherent states.” Writing

|α) =
∞∑

n=0

An|n)

we have
a |α) =

∑
An

√
n |n − 1) = α

∑
An|n)

giving An
√

n = αAn−1 whence

An = α√
n

An−1 = α2
√

n(n − 1)
An−2 = · · · = αn

√
n!

A0

Therefore
|α) = A0

∑ αn
√

n!
|n)

Normalization requires

1 = (α|α) = |A0|2
∑

m

∑

n

ᾱmαn
√

m!n!
(m|n) = |A0|2

∑

n

|α|2n

n!
= |A0|2e|α|2

and supplies
A0 = e−

1
2 |α|2 · ei(arbitrary phase)

Discarding the phase factors, we have

|α) = e−
1
2 |α|2

∑

n

αn
√

n!
|n) (6)

where α ranges freely on the complex plane.

Let α and β mark two points on the complex plane. Immediately

4 See Griffiths, §2.3.1 or Advanced Quantum Topics, Chapter 0, pages 40-41.
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(β|α) = e−
1
2 |β|

2− 1
2 |α|2

∑

m

∑

n

β̄mαn
√

m!n!
(m|n)

= e−
1
2 |β|

2− 1
2 |α|2

∑

n

β̄nαn

n!

= e−
1
2 |β|

2− 1
2 |α|2+β̄α (7.1)

Observing that

− 1
2 |β|

2 − 1
2 |α|

2 + β̄α = − 1
2 β̄β − 1

2 ᾱα + 1
2 β̄α + 1

2βᾱ

+ 1
2 β̄α − 1

2βᾱ

= − 1
2 |β − α|2 + 1

2 (β̄α − βᾱ)

we have
(β|α) = R(β, α) eiϕ(β,α) (7.2)

where R(β, α) = exp
{
− 1

2 |β − α|2
}

and iϕ(β, α) = 1
2 (β̄α − βᾱ). So

(β|α) &= 0
≈ 0 when |β − α| is large

But while coherent states—though normalized—are not orthogonal, they
are complete in the sense

∫
|α)d2α

π
(α| = I : d2α = dαrdαi (8)

as I demonstrate:5 We have
∫

|α)d2α
π

(α| = 1
π

∑

m

∑

n

1√
m!n!

{∫
e−|α|2 ᾱmαnd2α

}
|m)(n|

In polar coordinates α = reiθ and d2α = rdrdθ so we have

{
etc.

}
=
∫ ∞

0
e−r2

rm+n+1dr ·
∫ 2π

0
ei(n−m)θdθ = 2πδmn

∫ ∞

0
e−r2

rm+n+1dr

giving
∫

|α)d2α
π

(α| =
∑

n

2
n!

∫ ∞

0
e−r2

r2n+1dr|n)(n| =
∑

n

|n)(n| = I

where we have used 2
∫∞
0 e−r2

r2n+1dr = Γ (n + 1) = n! . While this establishes

5 Here again, my source is Gerry & Knight’s §3.5.
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completeness, the coherent states |α) are in fact “overcomplete.” For we have

|β) =
∫

|α)d2α
π

(α|β)

=
∫

R(α, β) eiϕ(α,β)

π
|α) d2α = weighted superposition of |α) states (9)

The “reproducing kernel”

K(α, β) = R(α, β) eiϕ(α,β)

π
= 1

π e−
1
2 |α|2− 1

2 |β|
2+ᾱβ

stands where a delta function δ(α−β) would stand if the coherent satates were
linearly independent. Notice that |β) itself contributes—but only fractionally—
to the preceding representation of |β): K(β, β) = 1

π . “Overcomplete bases” are
not commonly encountered, but are not intrinsically bizarre: look, for example,
to the quartet of normalized 2-vectors

e1 =
(

1
0

)
, e2 =

(
0
1

)
, e3 = 1√

2

(
1
i

)
, e4 = 1√

2

(
1
−i

)

which are seen to be complete in a sense

4∑

j=1

ej ej
+

2
=
(

1 0
0 1

)

that entails
ek =

∑

j

ejKjk with Kjk = 1
2 (ej , ek)

The fractional contribution of ek itself to the sum enters with weight Kkk = 1
2 .

The model fails, however, in one respect: the coherent states |α) arose as
eigenstates of a linear operator a , but the vectors ek cannot be produced
as eigenvectors of a matrix A; the matrices Pj = 1

2 ej ej
+ are complete but

are neither projective (PjPj = 1
2Pj) nor orthogonal. Spectral decomposition

methods are evidently not available when one is dealing with overcomplete
bases.

We cannot expect the transformation from the complete orthonormal basis
{|n)} to/from the overcomplete non-orthogonal basis to be unitary (or even to
be “square”). And indeed,

∫
(m|α)d2α

π
(α|n) = (m|n) = δmn

∑

n

(α|n)(n|β) = (α|β) = R(α, β) eiϕ(α,β) &= δ(α − β)
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so while (α|n) possesses a left inverse, it does not possess a right inverse. For a
finite-dimensional instance of such a situation consider the matrix

U =




1 0
0 1
0 0





which supplies

U+U =
(

1 0
0 1

)
, UU+ =




1 0 0
0 1 0
0 0 0





Coherent representation of states and operators. Let ψn denote the coordinates
of |ψ) in the number basis:

|ψ) =
∑

n

|n)ψn with ψn = (n|ψ),
∑

n

ψ̄nψn = 1

Passing to the coherent basis, we have

|ψ) = 1
π

∫
|α)d2α(α|ψ) = 1

π

∫
|α)d2α

∑

n

ψn(α|n)

From the adjoint of (6) we obtain

(α|n) = e−
1
2 |α|2

∑

m

ᾱm
√

m!
(m|n) = e−

1
2 |α|2 ᾱn

√
n!

giving

|ψ) = 1
π

∫
|α)d2α

{
e−

1
2 |α|2ψ(ᾱ)

}
(10.1)

ψ(z ) =
∑

n

ψn
zn
√

n!
(10.2)

Here
{
etc.

}
is the αth coherent coordinate of |ψ) and ψ(z) is an element of the

“Bargmann-Segal space” of entire functions.6

6 V. Bargmann, “On a Hilbert space of analytic functions and an associated
integral transform,” Comm. Pure & Applied Math. 14, 187-214 (1961) and
“Remarks on a Hilbert space of analytic functions,” PNAS 48, 199-203 (1962);
I. Segal, “Mathematical characterization of the physical vacuum for a linear
Bose-Einstein field,” Illinois J. Math. 6, 500-523 (1962). In “On the applications
of Bargmann Hilbert spaces to dynamical problems,” Annals of Physics 41,
205-229 (1967) S. Schweber illustrates the utility of Bargmann-Segal concepts
in quantum contexts that have nothing to do with coherent radiation (but much
to do with oscillators.)
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Turning from states to operators. . . in the number basis a linear operator
F—not presently assumed to be hermitian—acquires the representation

F =
∑

m,n

|m)Fmn(n | with Fmn = (m|F |n), elements of F

In particular, we have

N =





0 0 0 0 · · ·
0 1 0 0 · · ·
0 0 2 0 · · ·
0 0 0 3 · · ·
...

...
...

...
. . .





and use a |n) =
√

n |n − 1), a+|n) =
√

n + 1 |n − 1) to obtain

A =





0
√

1 0 0 · · ·
0 0

√
2 0 · · ·

0 0 0
√

3 · · ·
0 0 0 0 · · ·
...

...
...

...
. . .




, A+ =





0 0 0 0 · · ·√
1 0 0 0 · · ·

0
√

2 0 0 · · ·
0 0

√
3 0 · · ·

...
...

...
...

. . .





In the number representation the operators

q =
√

!/2(a+ + a), p = i
√

!/2(a+ − a)

therefore become

Q =
√

!/2





0 +
√

1 0 0 · · ·√
1 0 +

√
2 0 · · ·

0
√

2 0 +
√

3 · · ·
0 0

√
3 0 · · ·

...
...

...
...

. . .





P = i
√

!/2





0 −
√

1 0 0 · · ·√
1 0 −

√
2 0 · · ·

0
√

2 0 −
√

3 · · ·
0 0

√
3 0 · · ·

...
...

...
...

. . .





which are seen to be hermitian. The fundamental commutator [q , p ] = i! I
does not admit of finite-dimensional representation, since tr[Q, P ] = 0 in all
finite-dimensional cases, while tr[i! I ] = i!∞; for the matrices described above
we in (for example) the 5-dimensional case obtain

[Q, P ] = i! · diag{1, 1, 1, 1,−4} &= i!I

which is traceless. In the ∞-dimensional case the final term is “pushed out of
the picture” and (formally!) we recover [Q, P ] = i! I.
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Passing from the number basis to the coherent basis, we have

F =
∑

m,n

|m)Fmn(n |

= 1
π2

∫∫ ∑

m,n

|α)d2α(α|m)Fmn(n|β)d2β(β|

= 1
π2

∫∫
|α)d2α

{
e−

1
2 (|α|2+|β|2)F(ᾱ, β)

}
d2β(β| (11.1)

where

F(ᾱ, β) =
∑

mn

Fmn
ᾱmβn
√

m!n!
(11.2)

= e
1
2 (|α|2+|β|2)(α|F |β)

On the diagonal

e|α|2(α|F |α) = F(ᾱ, α) =
∑

mn

Fmn
ᾱmαn
√

m!n!

Since the |α)-basis is overcomplete, it is perhaps not surprising that the diagonal
elements (α|F |α) are sufficient to determine all the matrix elements (m|F |n):

Fmn = 1√
m!n!

(
∂
∂ᾱ

)m(∂
∂α

)n
F(ᾱ, α)

Look to the coherent description of the trace. We have

trF =
∑

n

(n|F |n) = 1
π2

∑

n

∫∫
(n|α)d2α(α|F |β)d2β(β|n)

= 1
π2

∫∫ ∑

n

d2α(α|F |β)d2β(β|n)(n|α)

= 1
π2

∫∫
d2α(α|F |β)d2β(β|α)

But the overcompleteness relation reads

1
π

∫
|β)d2β(β|α) = |α)

so we have
trF = 1

π

∫
(α|F |α)d2α (12)

which is—satisfyingly—quite as expected.
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Evaluation of (α|F |β) becomes trivial when F is presented as an
a+a-ordered function of a+ and a

F =
a+

[
F (a+, a)

]

a

for then
(α|F |β) = F (α, β) · (α|β) = F (α, β) · e− 1

2 |α|2− 1
2 |β|

2+ᾱβ (13)

Look, for example, to the unitary “displacement operator”7

D(u) = exp
{
ua+ − ūa

}
(14)

When A and B commute with their commutator C ≡ [A , B ] we have the
well-known Kermack-McCrae identity8

eA+B =
{

e−
1
2 C · eA eB : AB-ordered

e+ 1
2 C · eB eA : BA-ordered

(15)

From [ua+,−ūa ] = −|u|2[a+, a ] = +|u|2 I we are led therefore to

D(u) = e−
1
2 |u|

2
exp

{
ua+

}
exp

{
− ūa

}

⇓

(α|D(u)|β) = e−
1
2 |u|

2+uᾱ−ūβ

which provides a concrete instance of (13). More to the point and more
interestingly: it is clear that

a |0) = 0 ⇒ exp
{
− ūa

}
|0) =

∞∑

k=0

(−)k 1
k!

ū2 ak|0) = a0|0) = |0)

so we have

D(u)|0) = e−
1
2 |u|

2
exp

{
ua+

}
|0)

= e−
1
2 |u|

2
∞∑

n=0

un

n!
(a+)n|0)

= e−
1
2 |u|

2
∞∑

n=0

un
√

n!
|n) by (5)

= |u) by (6) (16.1)

at which point it becomes clear why D(u) operators are called “displacement
operators.” This result serves to establish the sense in which

|α) = D(α)|0) is a “displaced vacuum state” (16.2)

7 Roy J. Glauber, “Coherent and incoherent states of the radiation field,”
Phys. Rev. 131, 2766-2788 (1963), §III.

8 Advanced Quantum Topics (2000), Chapter 0, page 32.
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Products of unitaries are unitary; looking to the product D(u)D(v), we
have

D(u)D(v) = exp
{
ua+ − ūa

}
exp

{
va+ − v̄a

}

Appealing again to (15) with C = [ua+ − ūa , va+ − v̄a ] = (uv̄ − ūv) I we find

D(u)D(v) = e
1
2 (uv̄−ūv) · D(u + v) (17)

Since the multiplier e
1
2 (uv̄−ūv) is of the form eiφ it is physically inconsequential,

but φ admits nevertheless of an interesting geometrical interpretation: if
u = reiρ and v = seiσ then φ = rs sin(ρ − σ). Notice also that

D+(u) = D –1(u) = D(−u) (18)

Minimum uncertainty states. The Schrödinger inequality9

(∆A)2(∆B)2 !
〈

A B − B A
2i

〉2
+
[〈

A B + B A
2

〉
− 〈A〉〈B〉

]2
(19)

becomes
(∆x)2(∆p)2 !

(!
2

)2
+
[〈

x p + p x
2

〉
− 〈x〉〈p〉

]2

in the most familar instance. Minimal uncertainty ∆x∆p = 1
2! is achieved

if and only if [etc.] ≡ “quantum correlation coefficient”10 = 0. Familiarly, the
underlying Cauchy-Schwarz inequality (f |f)(g|g) ! |(f |g)|2 becomes equality
if and only if either |f) else |g) = 0 or |g) = λ|f). In the present application
|f) = 0 becomes A |ψ) = 〈A〉|ψ), so |ψ) is an eigenstate of A and (19) is reduced
to a triviality: ∆A = 0 (else ∆B = 0). More interesting are the implications11
of |g) = λ|f), which now reads

(
B − b

)
|ψ) = λ

(
A − a

)
|ψ) with a = 〈A〉 I , b = 〈B〉 I (20)

Multiplication by (A − a) else (B − b) gives

9 See “Simultaneous measurement of noncommuting quantum observables”
(October 2012), page 3.

10 In classical statistics, if x and y are random variables then one has (for all
m and n)

〈xmyn〉 = 〈xm〉〈yn〉 iff x ane y are statistically independent

The number 〈xy 〉−〈x〉〈y 〉 provides therefore a leading indicator of the extent to
which x and y are statistically dependent or correlated. Generally A B &= B A .
On the right side of (19) we are told to “split the difference.” See page 202 in
D. Bohm, Quantum Mechanics (1951).

11 See E. Merzbacher, Quantum Mechanics (2nd edition, 1970), page 160.
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λ(∆A)2 =
〈
(A − a)(B − b)

〉
= 〈A B〉 − 〈A〉〈B〉

λ–1(∆B)2 =
〈
(B − b)(A − a)

〉
= 〈B A〉 − 〈A〉〈B〉

which when added/subtracted give

λ(∆A)2 + λ–1(∆B)2 = 2
[〈

A B + B A
2

〉
− 〈A〉〈B〉

]
: want = 0 (21.1)

λ(∆A)2 − λ–1(∆B)2 = i〈C〉 (21.2)

where the hermitian operator C ≡ 1
i (A B − B A). The first of those equations

supplies λ2 = −(∆B/∆A)2 so λ is necessarily imaginary: λ = ±i(∆B/∆A).
Returning with this information to (21.2) we obtain

(
∆A ∆B

)
min

= ± 1
2 〈C〉 : discard the absurd sign

Reverting again to the case A = x , B = p we recover
(
∆x ∆p

)
min

= 1
2!. In

this instance (20) reads λ–1(p − p0 I)|ψ) = (x − x0 I)|ψ) which can be written

(x − λ–1 p)|ψ) = (x0 − λ–1p0)|ψ)

where x0 = 〈x〉, p0 = 〈p〉, λ–1 = −i∆x/∆p. In the x-representation

(!
i ∂x − p0

)
ψ(x) = λ(x − x0)ψ(x) : λ = i

∆p
∆x

= i !
2(∆x)2

⇓

∂xψ(x) =
[
− x − x0

2(∆x)2
+ ip0x/!

]
ψ(x)

of which the normalized solution is

ψ(x) =
( 1

2π(∆x)2
)1

4
exp

{
−
(

x − x0

2∆x

)2
+ ip0x/!

}
(22.1)

Such “launched Gaussian” states were first encountered by Schrödinger in the
paper12 in which he reported the Schrödinger inequality (19), and in my own
writing were most recently encountered13 as states produced by Arthurs-Kelly
measurements when the detectors read {x0, p0}. At x0 = p0 = 0 we have

ψ0(x) =
( 1

2π(∆x)2
)1

4
exp

{
−
(

x
2∆x

)2}
(22.2)

=
√

centered normal distribution with standard deviation ∆x

12 “Zur Heisenbergschen Unshärfeprinzip,” Berliner Berichte, 296–303 (1930)
13 See equation (12.1) on page 17 of 9. In such measurements the value of ∆x

(as also of ∆p = 1
2!/∆x) is set by the “balanced Gaussian” initial states of the

detectors.
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which becomes a description of the oscillator ground state when ∆x is assigned
a value set by the system parameters: ∆x =

√
2mω/! .

More abstractly, we have ψ0(x) = (x|0) where (0|0) = 1 and (x+iβ p)|0) = 0.
The latter equation can be written in a variety of ways, of which for our purposes
the most interesting is a |0) = 0 where a is the dimensionless non-hermitian
operator defined

a =
√

∆x∆p
2!

(
x

∆x
+ i

p
∆p

)
= 1√

2! (ξ –1 x + iξ p) (23)

ξ =
√

∆x/∆p

Here again, [x , p ] = i! I ⇒ [a , a+] = I so we have been led back—this time
not from oscillator theory but from Schrödinger’s identity—to the operators
{a , a+} that support what is called the theory of coherent states but on the
basis of the preceding argument might more reasonably be called the theory of
minimal uncertainty states.

The eigenstates a (which I will for the purposes of this discussion denote
|u) because the symbol α will have other work to do ) can be obtained by
“displacement” of the vacuum/ground state |0), as was remarked at (16). In
the x-representation we have

ψu(x) = (x|D(u)|0)

where

D(u) = exp
{
ua+ − ūa

}

= exp
{

1√
2!u(ξ –1 x − iξ p) − 1√

2! ū(ξ –1 x + iξ p)
}

↓
= exp

{
i
! (αp + β x)

}
if we write u = 1√

2! (−ξ –1α + iξβ)

= exp
{

1
2

i
!αβ

}
· exp

{
i
!β x

}
exp

{
i
!αp

}

supplies

ψu(x) = exp
{

1
2

i
!αβ

}
· exp

{
i
!βx

}
exp

{
α∂x

}
ψ0(x)

= exp
{

1
2

i
!αβ

}
· exp

{
i
!βx

}
ψ0(x + α)

= exp
{

1
2

i
!αβ

}
·
( 1

2π(∆x)2
)1

4
exp

{
−
(

x + α
2∆x

)2
+ iβx/!

}

If we discard the physically irrelevant phase factor exp
{

1
2

i
!αβ

}
and set

α = −x0, β = p0 —which is in effect to set

u = 1√
2! (ξ –1x0 + iξ p0)

(and could, in view of (23), not be more natural)—we recover precisely (22.1).
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Some additional means and uncertainties. The vacuum state |0)—which by
one interpretation became the oscillator ground state, and was defined by an
equation a |0) = 0 that implies N |0) = 0—arose from the requirement that

∆x∆p = minimum

Specifically, we found (0|x |0) = (0|p |0) = 0 which gave

∆x∆p = (0|x2|0)·(0|p2|0) = 1
2!

I look now to the evaluation of (n|x2|n)·(n|p2|n). From (23) we obtain

x =
√

!/2 ξ (a+ + a)

p = i
√

!/2 ξ –1(a+ − a)

Drawing upon a |n) =
√

n |n−1), a+|n) =
√

n + 1 |n+1) and the orthogonality
of the |n)-states we have (n|x |n) = (n|p |n) = 0, so

∆nx =
√

(n|x2|n), ∆np =
√

(n|p2|n)

where
(n|x2|n) = (!/2)ξ2(n|a+a+ + a+a + a a+ + a a |n)

But (n|a+a+|n) = (n|a a |n) = 0 by orthogonality, while

(n|a+a + a a+|n) = (n|N + I |n) = n + 1

so we have
(n|x2|n) = (!/2)ξ2 (n + 1)

Similarly (n|p2|n) = (!/2)ξ−2(n + 1)

so
∆nx ∆np = n+1

2 ! (24)

which gives back the familiar result at n = 0. A simple adjustment |n) → |α)
of the preceding argument supplies

(α| x |α) =
√

!/2 ξ (ᾱ + α)

(α|p |α) =
√

!/2 ξ –1(ᾱ − α)

(α| x2|α) = (!/2)ξ2 [(ᾱ + α)2 + 1]

(α|p2|α) = (!/2)ξ−2[(ᾱ − α)2 + 1]

If the system is in state |α) then

〈n〉 = (α|N |α) = (α|a+a |α) = ᾱα = |α|2 (25)

(n|α) = e−
1
2 |α|2

∑

m

αm
√

m!
(n|m) = e−

1
2 |α|2 αn

√
n!

by (6)

⇓

|(n|α)|2 = e−|α|2 ᾱnαn

n!
= e−|α|2 |α|2n

n!
= e−〈n〉 〈n〉n

n!
≡ ℘

(
n; 〈n〉

)
(26)
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Obviously
∑∞

0 ℘
(
n; 〈n〉

)
= 1. The discrete distribution ℘

(
n; 〈n〉

)
is precisely

the Poisson distribution with parameter 〈n〉. Evaluation of the higher moments

mν =
∞∑

k=0

nν℘(n) = (α|Nν |α)

poses an interesting operator-ordering problem, and leads to a result that can
be described

mν = Tν(〈n〉)

where Tν(x) =
∑ν

k=1 S(ν, k)xk is a “Torchard polynomial”14 and S(ν, k) is a
“Stirling number of the second kind.” Thus

m0 = 1
m1 = 〈n〉
m2 = 〈n〉 + 〈n〉2

m3 = 〈n〉 + 3〈n〉2 + 〈n〉3

m4 = 〈n〉 + 7〈n〉2 + 6〈n〉3 + 〈n〉4

m5 = 〈n〉 + 15〈n〉2 + 25〈n〉3 + 10〈n〉4 + 〈n〉5

which at 〈n〉 = 1 become “Bell numbers.”15 In particular, we have

m2 = (α|N2|α) = (α|a+a a+a |α)
= (α|a+a+a a + a+a |α)

= (ᾱα)2 + (ᾱα) = 〈n〉2 + 〈n〉

in agreement with a result just stated. These results supply

∆n =
√

m2 − m2
1 =

√
〈n〉 : variance = mean

14 Such polynomials are sometimes called “Bell polynomials,” and are
produced in Mathematica by the command BellB[ν,x] once one has installed
the Combinatorica package.

15 The Bell number Bν (produced by the command BellB[ν]) describes the
number of distinct partitions of a ν-element set. Look, for example, to the
3-element set {a, b, c}, of which the distinct partitions

{(a), (b), (c)}
{(a), (b, c)}
{(b), (a, c)}
{(c), (a, b)}
{(a, b, c)}

are B3 = 5 in number.
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so the fractional uncertainty becomes

∆n
〈n〉

= 〈n〉− 1
2

which decreases as the mean 〈n〉 = |α|2 increases. Recall in this connection
that (by the central limit theorem) as the mean becomes large the Poisson
distribution goes over to the Gaussian (or normal) distribution with that same
mean = variance:

℘(n; m) ≈ 1√
2πm

exp
{
− (n − m)2

2m

}
: set m = 〈n〉

Harmonic motion of coherent wavepackets. Look to the hermitian operator
defined

H = !ω(N + 1
2 I) : N = a+a

where a is given by (23). Some quick algebra supplies

H = 1
2ω(ξ2 p2 + ξ−2 x2)

= 1
2m (p2 + m2ω2 q2) if we set ξ2 ≡ ∆x/∆p = 1

mω
= Hosc

I once had occasion16 to indicate how quantum dynamics could be formulated
as a “theory of interactive moments,” and by way of introduction looked to the
oscillatory case. I digress to present a brief recapitulation of that discussion.
Working in the Heisenberg picture, we look to the motion of 〈p〉 = (ψ|p |ψ),
where |ψ) is arbitrary:

d
dt 〈p〉 = 1

i! 〈[p , H ]〉 = −mω2〈x〉

at which point we have acquired an interest in the motion of 〈x〉, so write

d
dt 〈x〉 = 1

i! 〈[x , H ]〉 = 1
m 〈p〉

Those coupled first-order equations entail

d2

dt2 〈x〉t + ω2〈x〉t = 0 =⇒ 〈x〉t = 〈x〉max cos(ωt + δ)

Therefore d
dt 〈p〉 = −mω2〈x〉max cos(ωt + δ) which gives

〈p〉t = 〈p〉max sin(ωt + δ) with 〈p〉max = mω〈x〉max

We have been brought thus by the simplest of means to the striking general
conclusion that for all states |ψ) the expectation values 〈x〉t and 〈p〉t oscillate
with angular frequency ω (90◦ out of phase, with interrelated amplitudes), just
as do the classical variables {x(t), p(t)}. If one looks similarly to the motion
of 〈p2〉 one acquires an interest in the motion of 〈C〉 with C = 1

2 (x p + p x),

16 Advanced Quantum Topics (2000), Chapter2, pages 51-60.
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whence of 〈D〉 with D = 1
m p2 − mω2 x2 and finds that

d
dt 〈C 〉 = 1

i! 〈[C , H ]〉 = 〈D〉
d
dt 〈D〉 = 1

i! 〈[D , H ]〉 = −4ω2〈C 〉

We infer that 〈C〉t and 〈D〉t both satisfy equations of the form

d2

dt2 〈A〉t + 4ω2〈A〉t = 0

and therefore oscillate with doubled frequency:

〈C 〉t = C sin(2ωt + δ)
〈D〉t = 2ωC cos(2ωt + δ)

Integration of
d
dt 〈p

2〉 = 1
i! 〈[p

2, H ]〉 = −2mω2〈C〉
d
dt 〈x

2〉 = 1
i! 〈[x

2, H ]〉 = 1
m 〈C〉

now gives
〈p2〉t = P 2 − mωC sin(2ωt + δ)

〈x2〉t = X2 + 1
mωC sin(2ωt + δ)

where P 2 and X2 are constants of integration that by energy conservation are
constrained to satisfy

1
2m 〈p2〉t + 1

2mω2〈x2〉t = 1
2mP 2 + 1

2mω2X2 = E

In work previously cited16 I discuss how—in principle—such arguments can be
carried out with Hamiltonians of arbitrary design.

The point to which I draw particular attention is that while Hosc causes
moments of all orders to oscillate with what might be called “classical rigidity,”
it is (in the Schrödinger picture) typically not the case that Hosc induces
wavepackets to move rigidly:

ψ(x, t) &= rigid translate of ψ(x, 0)

Generally

|ψ)t = U(t)|ψ)0 with U(t) = exp
{
− i

! Hosct
}

= e−i 1
2 ωt · exp

{
− iω tN

}

Clearly
|n)t = e−i(n+ 1

2 )ωt |n)0 (27)

so the |n)-states (energy eigenstates) simply “sit there and buzz” with their
respective frequencies. Writing ψn(x, t) = (x|n)t we have

ψn(x, t) = e−i(n+ 1
2 )ωt ψn(x, 0) =⇒ |ψn(x, t)|2 = |ψn(x, 0)|2

The probability density |ψn(x, t)|2 does in fact not move, but famously mimics
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the positional distribution of a classical oscillator with energy En = (n+ 1
2 )!ω.17

Coherent states were seen at (6) to be linear combinations of number states
(i.e., of energy eigenstates, each buzzing at its own frequency) and possess
therefore the character of wavepackets. As it happens, the buzzing components
conspire to produce a net motion which is in this instance quite distinctive. We
have

|α)t = e−i 1
2 ωt · exp

{
− iω tN

}
|α)0

From N = a+a and [a , a+] = I we get a Nk = (N+ I)k a : k = 0, 1, 2, 3, . . . whence

a · euN = eueuN a

which when applied to |α) gives

a · euN |α) = αeu · euN |α) =⇒ euN |α) = |αeu)

We therefore have
|α)t = e−i 1

2 ωt · |αe−iωt) (28)

The prefactor e−i 1
2 ωt is unphysical; αe−iωt traces with angular velocity ω a

circle of radius |α| on the complex α-plane.
We established on page 12 that if we write α = 1√

2! (ξ –1x0 + i ξp0) then in
x-representation

ψα(x) = (x|α) = (x|D(α)|0)

= exp
{
− 1

2
i
!x0p0

}
·
( 1

2π(∆x)2
)1

4
exp

{
− 1

4

(x − x0

∆x

)2
+ ip0x/!

}
(29)

Since this is a minimal-uncertainty state, we have ∆x∆p = !/2 whence

ξ2 ≡ ∆x
∆p

= 2(∆x)2

! =⇒ ∆x =
√

!/2 ξ

But we saw on page 15 that when we import oscillator parameters we have
ξ = 1/

√
mω, so

∆x =
√

!/2mω

The evolved oscillator coherent state (displaced ground state) is described

ψα(x, t) = ψα(t)(x)

where
α(t) = 1√

2! (ξ –1x0 + i ξp0)(cos ωt − i sin ωt)

= 1√
2!

{
(ξ –1x0 cos ωt + ξp0 sin ωt) + i(ξp0 cos ωt − ξ –1x0 sin ωt)

}

= 1√
2!

{
ξ –1(x0 cos ωt + ξ2 p0 sin ωt) + iξ (p0 cos ωt − ξ−2x0 sin ωt)

}

≡ 1√
2!

{
ξ –1x(t) + iξp(t)

}

17 See figure 2.7(b) on page 58 of David Griffiths’ Introduction to Quantum
Mechanics (2nd edition, 2005).
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Calculation establishes that if ξ2 = 1
mω then

1
2mp2(t) + 1

2mω2x2(t) = 1
2mp2

0 + 1
2mω2x2

0 = E

so the moving point {x(t), p(t)} traces an isoenergetic ellipse in classical phase
space, while

ψα(x, t) = exp
{
− 1

2
i
!x(t)p(t)

}

·
( 1

2π(∆x)2
)1

4
exp

{
− 1

4

(x − x(t)
∆x

)2
+ ip(t)x/!

}
(30.1)

⇓

|ψα(x, t)|2 =
( 1

2π(∆x)2
)1

2
exp

{
− 1

2

(x − x(t)
∆x

)2}
(30.2)

is a Gaussian which sloshes rigidly back and forth with period τ = 2π/ω and

amplitude =
√

2E/mω2

Equations (29) describe the motion of a “launched oscillator ground state.”

Wigner representation of coherent states. With nothing more than a passing
allusion to “work done some years ago by Leo Szilard and the present author
for another purpose,” E. P. Wigner18 was content simply to pluck from his hat
the construction

Pψ(x, p) = 2
h

∫
ψ̄(x + ζ)e2 i

! pζψ(x − ζ)dζ (31)

that in the hands of J. H. Groenwald19 and especially of J. E. Moyal20 was to
give rise to the “phase space formulation of quantum mechanics,” to which a
fairly comprehensive introduction can be found in Chapter 2 of my Advanced
Quantum Topics (2000). It emerged that if the quantum observable A stands
in “Weyl correspondence” with the classical observable

A(x, p) =
∫∫

a(α, β) e
i
! (αp+βx) dαdβ

A(x, p) −−−−−−−→
Weyl

A =
∫∫

a(α, β) e
i
! (αp+β x ) dαdβ

and if P (x, p) is the inverse Weyl transform of the density matrix ρ, then

18 “On the quantum correction for thermodynamic equilibrium,” Phys. Rev.
40, 749 (1932).

19 “On the principles of elementary quantum mechanics,” Physica 12, 405
(1946).

20 “Quantum mechanics as a statistical theory,” Proc. Camb. Phil. Soc. 45,
92 (1949).
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quantum expectation values assume formally the structure of the expectation
values encountered in classical statistical mechanics:

〈A〉ρ = trAρ =
∫∫

A(x, p)P (x, p)dxdp

In particular, one has

trρ = 1 =
∫∫

P (x, p)dxdp

as one would expect if P (x, p) referred to a “distribution on phase space.” But
—and here quantum theory asserts its exceptionalism—Wigner distributions
can (and typically do) assume negative values. At no point does this
circumstance compromise their quantum mechanical utitility, but in its light
they are called “quasi-distributions.”21 It was known to Wigner, but first
reported (without proof) by Takabayasi,22 that P (x, p) is bounded above and
below by a universal constant that becomes infinite in the classical limit:

|P (x, p)| ! 2
!

This in conjunction with
∫

P (x, p)dxdp = 1 means that P (x, p) cannot have
a “phase space footprint” with area less than 1

2!, which casts the Heisenberg
uncertainty principle in interesting new light: a rectangle of that minimal area
would have sides ∆x and ∆p that satisfy ∆x∆p = 1

2!.

The phase space formulation of quantum mechanics is a lovely subject
which, unfortunately, has been (at least until recently) largely ignored by the
authors of quantum textbooks.23 The subject has, however, acquired the status
of an important tool in the hands particularly of physicists concerned with
quantum optics and its application to foundational problems. It is, therefore,
not surprising that the subject is touched upon in §3.7 of Garry & Knight.5

When the density operator refers to a pure state ρ = |ψ)(ψ| we recover
precisely the Wigner distribution (31). If, in particular, we insert the coherent
state (29) into (31) we (use Mathematica’s Fourier Transform command)

21 Feynman—among many others (including John Bell)—admitted to a
fascination with the “negative probability” idea; for references, see pages 62-64
and 71-72 in Chapter 2 of Advanced Quantum Topics (2000).

22 T. Takabayasi, “The formulation of quantum mechanics in terms of
ensembles in phase space,” Prog. Theo. Phys. 11, 341 (1954). See especially
§7 in that important paper.

23 There is, for example, no mention of the subject in Griffiths or Mertzbacher,
though Asher Peres, in Chapter 10 (“Semiclassical Methods”) of his Quantum
Theory : Concepts and Methods (1993) does in his §10-4 provide a brief (and
not-very-helpful) account of its bare essentials.
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obtain
Pα(x, p) = 2

h
exp

{
− 1

2

(
x − x0

∆x

)2
− 1

2

(p − p0

∆p

)2}
(32)

with ∆p = 1
2!/∆x. The associated marginal distributions are

Xα(x) =
∫

Pα(x, p)dp = 1√
2π ∆x

exp
{
− 1

2

(
x − x0

∆x

)2}
(32.1)

Pα(p) =
∫

Pα(x, p)dx = 1√
2π ∆p

exp
{
− 1

2

( p − p0

∆p

)2}
(32.2)

Here as before, α = 1√
2! (ξ –1x0 + i ξp0) where x0, p0 and ξ = ∆x/∆p serve

as control parameters. Note that the Wigner functions of coherent states are,
according to (32)—quite uncharacteristically of Wigner functions in general—
everywhere non-negative.

Set x0 = p0 = 0 and ξ = 1/
√

mω ; then (32) becomes a description
of the oscillator ground state. Displaced ground states (relax the conditions
x0 = p0 = 0) are perfectly good oscillator states which Hosc sets into elliptical
motion:

Pα(x, p, t) = 2
h

exp
{
− 1

2

(x − x(t)
∆x

)2
− 1

2

(p − p(t)
∆p

)2}

In x-representation the energy eigenstates of an oscillator (eigenstates |n) of
the number operator) can in terms of the variables

κ =
√

2mω/! · x : dimensionless length

℘ =
√

2/mω! · p : dimensionless momentum

be described
ψ0(x) = 1√

a
√

2π
e−

1
4 κ2

ψ1(x) = 1√
a
√

2π
e−

1
4 κ2

· 1√
1!

κ

ψ2(x) = 1√
a
√

2π
e−

1
4 κ2

· 1√
2!

(κ 2 − 1)

with a =
√

!/2mω, and give rise to Wigner distributions that can be written

P0(x, p) = +2
he−

1
2E

P1(x, p) = −2
he−

1
2E(1 − E)

P2(x, p) = +2
he−

1
2E(1 − 2E + 1

2E2)
...

Pn(x, p) = (−)n2
he−

1
2ELn(E)






(33)

Here E = κ 2 +℘2 is “dimensionless energy,” interpretable as the squared radius
of a circle inscribed on the {κ, ℘}-coordinated phase plane, and the functions
Ln(•) are Laguerre polynomials. At n = 0 we recover the Wigner function of
the oscillator ground state. In all excited cases (n > 0) the oscillator Wigner
functions exhibit annular regions of negativity. In particular, Podd(0, 0) < 0.
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In Mathematica 7 use variants of the following command

Plot3D[(-1)3 Exp[- 1
2(x

2+p2)] LaguarreL[3,x2+p2],{x,-6,6},
{p,-6,6}, PlotRange→{-1,1}, PlotPoints→50,
Mesh→False, Boxed→False, Axes→False]

to see what such functions look like.

At this point (4:27pm, 11 December 2012) I received word that Richard

Crandall has been admitted to the ICU at OHSU suffering from acute

leukemia. Chemotherapy is under way, is expected to continue for

some time, and he reportedly “feels like shit.”

In 1940, Kôdi Husimi (1909-2008)—then a young physicist at the
University of Osaka—published a searching account of the theory of density
operators.24 Though somewhat tangential to Husimi’s main interests (nuclear
physics, plasma physics, statistical mechanics, origami. . . and later: the control
of nuclear weapons), the paper demonstrated an exceptionally secure command
of quantum developments during the 1930s, but—oddly—it appears thatHusimi
had never heard of Wigner distributions. The theory of which he proceeded to
reinvent. . . and to extend: Husimi devised a pretty way to “temper” Wigner’s
quasi-distributions so that they become everywhere -non-negative proper
distributions. Husimi’s idea is easy to describe, though I must direct my reader
elsewhere25 for a detailed demonstration that it works as claimed: he introduces
a “smear function” which is none other than the Wigner function (32) of a
coherent state

G(x − x0, p − p0) = 1
σ
√

2π
1

λ
√

2π
exp

{
− 1

2

[
x−x0

σ

]2 − 1
2

[p−p0
λ

]2}

(where σ and λ are subject to the “minimality condition” σλ = 1
2!) and proceeds

Pψ(x, p) −−−−−−−→
Husimi

PPψ(x, p) = h

∫∫
G(x − x ′, p − p ′)Pψ(x ′, p ′)dx ′dp ′

where a “poor man’s bold” symbol has been used to suggest that PPψ is a
“smeared” companion of Pψ. It can be shown without much difficulty that
all Husimi functions are in fact everywhere-non-negative and normalized. But
while Wigner functions satisfy

h

∫∫
P 2

ψ(x, p)dxdp = 1 : all |ψ)

as an expression of the pure-state condition trρ2
ψ = 1, one finds that Husimi

24 “Some formal properties of the density matrix,” Prog. Phys. Math. Soc.
22, 264-314 (1940). The paper was published in English, but in a journal that
was not widely available in the West until after the war; it took many years for
its value to be appreciated.

25 See once again Advanced Quantum Topics (2000), Chapter 2, pages 36-50.
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smearing produces a result known to be characteristic of mixtures:

h

∫∫
PP 2

ψ(x, p)dxdp < 1 : all |ψ)

The Husimi transforms of the oscillator energy eigen-distributions (33) are
found to read

PP0(x, p) = 1
2

2
he−

1
4E

PP1(x, p) = 1
8

2
he−

1
4E · E

PP2(x, p) = 1
64

2
he−

1
4E · E2

...

PPn(x, p) = 1
2·4n·n!

2
he−

1
4E · En






(34)

which are manifestly non-negative. One verifies that
∫∫

PPn(x, p)dxdp = 1 : all n

but discovers that
h

∫∫
PP 2

0 (x, p)dxdp = 1
2 < 1

h

∫∫
PP 2

1 (x, p)dxdp = 1
4 < 1

h

∫∫
PP 2

2 (x, p)dxdp = 3
16 < 1

...

Historically (and still today), some people have looked upon the fact that
Wigner distributions display regions of negativity as a fatal defect—reason
enough to abandon the entire Wigner/Moyal formalism. Certainly those regions
of negativity pose a problem if one proposes to use

entropy = −
∫∫

P (x, p) log P (x, p)dxdp

to assign an entropy to quantum states and mixtures, for it leads to a “complex
entropy,” a notion with which I have wrestled a bit elsewhere. Others have
considered it to be evidence that the formalism stands in need of surgery.
Husimi’s procedure (and others have been proposed) can be viewed in this
light.26 But what I myself find most striking about Husimi’s procedure is the
novel use it makes of (the entire population of) coherent states.

26 So little known did Husimi’s work for so long remain that after a lapse
of 36 years Nancy Cartwright—a philosopher of science then at Stanford—felt
called upon to reinvent it: “A non-negative Wigner-type distribution,” Physica
83A, 210 (1976). Of course, neither Husimi nor Cartwright made mention of
coherent states.
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Yet another route to the coherent state concept . We looked first to the
eigenstates of the operator a that arises when the oscillator Hamiltonian is
factored, and were led to the overcomplete population of “coherent states” |α).27
When we looked to the functions that minimize the expression on the right side
of Schrödinger’s inequality we (assuming that the observables in question are—
like x and p—conjugate) were led back again to that same population of states,
which acquired at this point the significance of “minimal uncertainty states,”
states that kill the quantum correlation coefficient. We encountered those states
(actually the Wigner representations of those states) once again as the “Husimi
smear functions” that remove regions of negativity from Wigner distributions.
I turn now to review of yet another line of argument from which coherent states
emerge as natural objects.28

In 1965, two relatively obscure Bell Labs engineers who were interested in
“determining the limitations of coherent quantum mechanical amplifiers, etc.”
published a 5-page paper29 that for nearly thirty years attracted very little
attention.30 It did, however, engage the immediate attention of C. Y. She and
H. Heffner, two applied physicists at Stanford, who within seven months had
submitted a paper that took Arthurs & Kelly as its point of departure.31

Arthurs & Kelly, elaborating on a dynamical measurement model proposed

27 Supersymmetric quantum mechanics exploits the analogous material that
emerges whenever a positive semi-definite Hamiltonian can be written as a
Wieshart product H1 = W+W . In that theory the properties of H1 are studied
in conjunction with those of its companion H2 = W W+. See Christopher
Lee, “Supersymmetric quantum mechanics,” (Reed College Thesis, 1999), which
provides a good introductory review and an elaborate bibliography. See also
pages 4-7 of my “Simultaneous measurement of noncommuting quantum
observables,” (October 2012). “Factorization methods” were pioneered by Dirac
(1935) and Schrödinger (1940) and further developed in a famous paper by
Leopold Infeld & T. E. Hull, “The factorization method,” Rev. Mod. Phys.
23, 21-68 (1951). A Google search reveals that the literature has assumed vast
proportions. An interesting recent contribution is J. Oscar Rosas-Ortez, “On
the factorization method in quantum mechanics,” which is available on the web
at arXiv:quant-ph/9812003v2 14 Oct 1999.

28 It was this last line of argument that originally motivated this entire
discussion.

29 E. Arthurs & J. L. Kelly, Jr., “On the simultaneous measurement of a pair
of conjugate observables,” Bell System Technical Journal 44, 725-629 (1965).
The paper actuallyappeared in an appendage to that journal calledBSTJ Briefs.

30 The writing is densely obscure, and the authors claim a result that most
physicists were prepared to find dubiously perplexing. Besides, it was not the
habit of most physicists to scan the BSTJ, even though it was the journal in
which Claude Shannon and his distinguished Bell colleagues usually published.

31 C. Y. She & H. Heffner, “Simultaneous measurement of noncommuting
observables,” Phys. Rev. 152, 1103-1110 (1966). Heffner maintained a working
relationship with W. H. Louisell at Bell Labs.



24 Harmonic oscillator—revisited: coherent states

by John von Neumann in the final pages of his Mathematical Foundations of
Quantum Mechanics (1932), imagined a two-detector device that upon
completion of its interaction with a system in initial state ψ(x) announces
{x0, p0}, signaling (as they show) that it has accomplished

ψbefore(x) −−−−→ ψafter(x) =
( 1

2π(∆x)2
)1

4
exp

{
− 1

4

(
x − x0

∆x

)2
+ ip0x/!

}

where the value of ∆x is set by the specialized initial states of the detectors.
The point of immediate relevance (see again (29)) is that as a byproduct of its
activity the Arthurs/Kelly device prepares coherent states.

She & Heffner—who were familiar not only with quantum optics (then
in its infancy) but also with the Bayesian information-theoretic approach to
physics (and to science generally) propounded by E. T. Jaynes32—proposed to
recover essential aspects of Arthurs/Kelly’s result from an appeal to a maximal
entropy principle. I turn a review of their argument, which they relegate to an
appendix.

With She & Heffner, we seek the positive definite self-adjoint operator ρ
that maximizes the von Neumann entropy

S = −tr(ρ log ρ)

subject to these five constraints

trρ = 1 (i)
tr(xρ) = x0 (ii)
tr(pρ) = p0 (iii)
tr(x2ρ) = x2

0 + (∆x)2 (iv)
tr(p2ρ) = p2

0 + (∆p)2 (v)

of which the first completes the list of requirements imposed upon density
operators. We suppose x0 and p0 to be freely specifiable, but anticipate that ∆x
and ∆p will ultimately become subject to the familiar constraint ∆x∆p " 1

2! .
Evidently ρ can be written

ρ = exp
{
λ0 I + λ1 x + λ2 x2 + λ3 p + λ4 p2

}

where the λs are Lagrange multipliers. To evaluate the traces we might bring
{
λ0 I + λ1 x + λ2 x2 + λ3 p + λ4 p2

}
exp

{
λ0 I + λ1 x + λ2 x2 + λ3 p + λ4 p2

}

to x p-ordered form and make use of the “mixed representation trick.”33 But

32 They cite E. T. Jaynes, “Information theory and statistical mechanics,”
Phys. Rev. 106, 620-630 (1957), but more relevant is “Information theory and
statistical mechanics. II,” Phys. Rev. 108, 171-190 (1957). Jaynes, by the way,
had been a student of Wigner.

33 See Advanced Quantum Topics, Chapter 0, page 38. A relevant ordering
identity (“McCoy’s theorem”) appears on page 34. See also page 41.
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that program is somewhat easier to execute if one expresses all {x , p}-operators
in terms of the {a , a+}-operators introduced at (23). Writing34

log ρ = µ0 − µ1(a+ − ā)(a − a)

= (µ0 + āa − g2!) − µ1

{
g2ξ−2 x2 + g2ξ2 p2

− (a + ā)g ξ−1 x + i(a − ā)g ξ p
}

= µ0 − µ1 A+A with A = a − a I

we could read off descriptions of {λ0, λ1, λ2, λ3, λ4}, the role of which has been
taken over by {µ0, µ1, ξ,)(a),*(a)}. We now have

ρ = eµ0 exp
{
− µ1 A+A

}

which by [A , A+] = I and a corollary euAB = exp
{

1 − e−uC

C A :B
}

of McCoy’s
theorem33 assumes the ordered form

= eµ0 exp
{
− (1 − e−µ1)A+: A

}

where the colon signifies that all A+s are to be placed left of all As, as in the
following example: eA :B ≡

∑ 1
n! A

n Bn (this notational convention is due to
Schwinger). So we have

trρ = 1
π

∫∫
(α|ρ |α)d2α

= eµ0 1
π

∫∫
exp

{
(e−µ1 − 1)(ᾱ − ā)(α − a)

}
d2α

= eµ0(1 − e−µ1)–1 · 1
π

∫∫
e−β̄β d2β with β =

√
1 − e−µ1 (α − a)

= eµ0(1 − e−µ1)–1

which to achieve trρ = 1 enforces

eµ0 = 1 − e−µ1 ≡ ε (35.1)

The density operator has at this point assumed the form the form

ρ = ε exp
{
− εA+: A

}

Constraints (ii) and (iii) can be consolidated, to read

tr(aρ) = g(ξ−1x0 + iξp0)

34 As a notational convenience I have dropped all I operators and adopted
the abbreviation g = 1√

2! .
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Arguing as before, we have

tr(ρa) = 1
π

∫∫
(α|ρa |α)d2α

= 1
π

∫∫
α · ε exp

{
− ε(ᾱ − ā)(α − a)

}
d2α

= 1
π

∫∫ (
a + ε−

1
2 β

)
· εe−β̄β d2β

ε

= a

because 1
π

∫∫
exp(−|β|2)d2β = 1 while

∫∫
β exp(−|β|2)d2β vahishes by a parity

argument. So we have
a = 1√

2! (ξ−1x0 + iξp0) (35.2)

It remains to work out the implications of (iv) and (v). To that end we observe
that

A ≡ a − a = g
(
ξ−1(x − x0) + iξ (p − p0)

)

A+ ≡ a+ − ā = g
(
ξ−1(x − x0) − iξ (p − p0)

)

give
x − x0 = 1

2g−1ξ (A+ + A)

p − p0 = i 1
2g−1ξ−1(A+ − A)

so
(x − x0)2 = 1

4g−2ξ2 (A+A+ + 2A A+ + A A − I)

(p − p0)2 = − 1
4g−2ξ−2(A+A+ − 2A A+ + A A + I)

and therefore (use 1
4g−2 = 1

2! and exploit trAB=trBA)

(∆x)2 = tr
[
(x − x0)2ρ

]

= 1
2! ξ2 tr

{
A+A+ρ + 2A+ρA + ρA A − ρ

}

= 1
2! ξ2 · 1

π

∫∫
(α|

{
etc.

}
|α)d2α

= 1
2! ξ2 · 1

π

∫∫ {[
(ᾱ − ā) + (α − a)

]2 − 1
}

· ε exp
{
− ε(ᾱ − ā)(α − a)

}
d2α

= 1
2! ξ2 · 1

π

∫∫ {
ε−1(β̄ + β)2 − 1

}
e−β̄β d2β : β = x + iy

⇓
= 1

2! ξ2 ·
(

2
ε − 1

)

= 1
2! ξ2 · 1 + e−µ1

1 − e−µ1
(35.3)

Similarly

(∆p)2 = 1
2! ξ−2 · 1 + e−µ1

1 − e−µ1
(35.4)
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Equations (35.3/4) conjointly supply

ξ2 = ∆x
∆p

(35.5)

(which we had occasion to write already at (23) on page 12) and

µ1 = log
(

(∆p)2 + 1
2!ξ−2

(∆p)2 − 1
2!ξ−2

)
= log

(
∆x∆p + 1

2!
∆x∆p − 1

2!

)
(35.6)

from which by (35.1) it follows that

µ0 = log
(
1 − e−µ1

)
(35.7)

Equations (35.7/6/5/2) describe in terms of {x0, p0, ∆x,∆p} the values that
must be ascribed to the parameters {µ0, µ1, ξ,)(a),*(a)} if ρ is to conform to
the constraints (i)-(v).

It is natural (and, as will emerge, instructive) to ask: Does

ρ = ε exp
{
− εA+: A

}
(36)

describe a pure state (trρ2 = 1) or a mixed state (0 < trρ2 < 1)? Adjustment
of the argument that led to (35.1) supplies

ρ2 = e2µ0 exp
{
− 2µ1 A+A

}
= e2µ0 exp

{
− (1 − e−2µ1)A+: A

}

⇓
trρ2 = e2µ0(1 − e−2µ1)–1

= 1
(1 − e−µ1)2(1 − e−2µ1)

≡ f(µ1)

Plot f(µ1) and see that

trρ2 is






< 0 if µ1 < 0
∞ if µ1 = 0
> 1 if µ1 > 0
→ 1 as µ1 → ∞

so the only tenable case is the last one: ρ becomes an admissible density
operator if and only if µ1 = ∞, which by (35.6) requires ∆x∆p = 1

2!, in
which case ρ refers to a pure state.35

35 Here She & Heffner dropped the ball: they assert without argument (citing
only §VI of Glauber,2 though Glauber does not really address the issue) that
ρ is positive-definite if and only if 1 − e−µ1 " 0, which requires µ1 " 0. But
in those cases ρ cannot be positive-definite, since trρ2 > 1 becomes consistent
with trρ = 1 only if ρ possesses negative eigenvalues, as illustrated by the
following simple example:

M =
(

2 0
0 −1

)
: trM = 1, trM2 = 3 > 1
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If µ1 = ∞ then µ0 = 0, ε = 1 and (36) assumes the simple form

ρ = exp
{
− A+: A

}

= exp
{
− (a+ − ā) : (a − a)

}
(37)

and the question arises: To what state does ρ projectively refer? She/Heffner
proceed from the observation that (by (7.1))

(α|ρ|β) = exp
{
− (ᾱ − ā)(β − a)

}
· (α|β)

= exp
{
− ᾱβ + ᾱa + βā − |a|2

}
· exp

{
− 1

2 |α|
2 − 1

2 |β |
2 + ᾱβ

}

= exp
{
− 1

2 |α|
2 − 1

2 |β |
2 − |a|2 + ᾱa + β ā

}

while

(α|a)(a|β) = exp
{
− 1

2 |α|
2 − 1

2 |a|
2 + ᾱa

}
· exp

{
− 1

2 |a|
2 − 1

2 |β |
2 + β ā

}

= exp
{
− 1

2 |α|
2 − 1

2 |β |
2 − |a|2 + ᾱa + β ā

}

So

(α|ρ|β) = (α|a)(a|β) : all coherent states |α), |β)
⇓

ρ = |a)(a| where a = 1√
2! (ξ−1x0 + iξp0) by (35.2)

ξ =
√

∆x/∆p by (35.5)

Which is to say: The unique (pure) density operator that conforms to the
constraints (i)-(v) projects onto the coherent state which, as we saw at (29),
can in x-representation be described

ψa(x) = (x|a) =
( 1

2π(∆x)2
)1

4
exp

{
− 1

4

(x − x0

∆x

)2
+ ip0x/!

}

Alternatively, we might have proceeded

Pa(x, p) ←−−−−−−−−−−−−
inverse Weyl

ρ9Beck inversion trick

ψa(x)

but I omit those details.36

She & Heffner drew inspiration from Jaynes’ “maximal entropy principle,”
and it was the construction S(ρ) = −tr(ρ log ρ) that supplied the preceding
discussion with its analytical leverage. It is curious, therefore, that we have not
had to construct an explicit description of S(ρ)—though we are in position to
do so—and have not demonstrated that S(ρ) is in fact maximal , though since
ρ is unique (the element of a single-member set) it is necessarily so.

36 See Advanced Quantum Topics (2000), Chapter 2, pages 13-14.
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But why “coherent”? Possible generalizations. We found that the a-algebra,
which sprang historically from Dirac’s approach to simple oscillatory theory,
has a life quite independent of oscillators, and when pushed farther (Glauber,
Bargmann) than its mechanical application demands gives rise to overcomplete
eigenstates |α) that are called “coherent states” for reasons that no mechanical
usage can justify. We found that those same states emerge when one looks for
the states that reduce Schrödinger’s inequality

(∆x)2(∆p)2 "
( [x , p ]

2i

)2
+

[
quantum correlation coefficient

]2
(38)

to equality, and that they might for that reason be called “minimal uncertainty
states.” They are, moreover, the states prepared by Arthurs/Kelly’s idealized
“simultaneous {x, p}-measurement device.” And they are the states employed
by Husimi to heal Wigner quasi-distributions of their regions of negativity.
Finally, we found—in the She/Heffner work that inspired this essay (again using
the resources of a-algebra)—that an information-theoretic search for entropy-
maximizing the density operator ρafter that conforms to specified values of 〈x〉,
〈p〉, 〈x2〉 and 〈p2〉 leads back again to that same population of states, which
might on that basis be called “maximal entropy states.”

So why have the eigenstates |α) of a-operators—for which our experience
has suggested at least two plausible names—come to be called “coherent states”?
A clue is provided by the observation that in the papers of Bargmann (1961/62)
and Segal (1963) they do not bear that name, while a reference to “coherence”
appears already in the title (“Coherent and incoherent states of the radiation
field”) of Glauber’s paper (1963).2 “Coherence” is a notion that arises in the
physics of waves (originally optics and acoustics, later “wave mechanics”),
as a precondition for the occurance of interference effects when two or more
waves are superimposed (“it takes two to interfere,” two to cohere). It is,
therefore, a notion irrelevant to the physics of solitary waves, or the mechanics of
systems with only one moving part (oscillators, for example, or particle-in-a-box
systems). Quantum optics (bosonic field theory, which is effectively a theory of
systems of oscillators) is, however, a subject into which correlation/coherence
enter as essential statistical ideas. It is, I suppose, in the light of this conceptual
linkage that the states which kill the quantum correlation term in (38) came to
be called “coherent states.”

The Schrödinger inequality is “binary” in that it posits the existence of
two non-commuting operators (A and B : “it takes two to correlate”), speaks
statistically about a relationship between two experimental numbers: ∆A and
∆B. By specialization it speaks about cases in which A and B are conjugate:
[A , B ] = i! I . It becomes natural to ask: Can the Arthurs/Kelly simultaneous
measurement scheme and/or the She/Heffner argument be modified to
accommodate cases in which the observables, though non-commuting, are not
conjugate?37 Noting that while conjugacy is a binary concept, non-commutivity

37 Shu/Heffner appear to claim so in the title (“Simultaneous measurement of
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is not, it becomes natural to ask: Can analogs of the Schrödinger inequality, or of
the Arthurs/Kelly measurement scheme, or of the She/Heffner maximal entropy
argument. . .be developed which contemplate the existence of three or more
non-commutative observables {A , B , C , . . .}? Is it possible, for example, to
speak of an optimal simultaneous measurement of all three components of
angular momentum (spin)? Finally, it would be of interest to describe (which
we appear to be in position to do without much difficulty) the entropy change

∆S = Spost-measurement − Spre -measurement

brought about by simultaneous measurement processes.38

noncommuting observables”) of their paper, but do not really address the issue.
Note that the a-algebra, of which they make essential use, is itself based upon
a conjugacy statement: [a , a+] = I .

38 Aspects of this topic were addressed (inconclusively) in a Reed College
physics seminar (“Quantum theory of measurements, and entropy”) presented
by F. J. Belinfante on 3 April 1985, of which I possess what is, I suspect, the
only surviving copy of the unpublished text.


